

MAERI-FPGA: Enabling HW Design Space Exploration on Real FPGA Hardware Platform

Tushar Krishna

Associate Professor School of ECE Georgia Institute of Technology

ICS 2022	
Tutorial	

June 27, 2022

Email: tushar@ece.gatech.edu

Presenters

Tushar Krishna Associate Professor Georgia Tech

Jianming Tong PhD Student Georgia Tech

Other Contributors

- Yangyu Chen
- Yue Pan
- Abhimanyu Bambhaniya
- Taekyung Heo
- Hyoukjun Kwon

Acknowledgment: Some of the work done as part of ARIAA Co-Design Center (Georgia Tech, PNNL, Sandia National Labs)

Schedule (EST)

Time slot	Торіс	
14:00 to 14:30	Introduction to DNN Accelerators	Tushar
14:30 - 14:40	Break	
14:40: 15:10	MAERI2.0 Architecture and Tool Flow	Jianming
15:10 to 15:30	Demo on FPGA	Jianming

Brief Q/A at the end of each talk.

Please feel free to interrupt and ask questions or use chat

Attention: Tutorial is being recorded!

https://maeri-project.github.io/tutorials/ics-2022

Deep Learning Applications

"AI is the new electricity" – Andrew Ng

Object Detection

Image Segmentation

Medical Imaging

Speech Recognition

Text to Speech

Speech

Text

Recommendations

Games

Computation Platforms in Deep Learning

Challenges in Design and Deployment

Outline

- Background on DNNs
- DNN Accelerators
- Dataflow and Mapping
- Flexibility

Outline

- Background on DNNs
- DNN Accelerators
- Dataflow and Mapping
- Flexibility

What is a Deep Neural Network?

Modern Deep Learning Landscape

Computations in a DNN \rightarrow Linear Algebra

Neuron => Vector x Vector

Computations in a DNN \rightarrow Linear Algebra

Computations in a DNN \rightarrow Linear Algebra

Convolutional Neural Networks

Shared Weights: All neurons use the *same* filter weights

MAERI-FPGA @ ICS 2022

Loop Nest Representation

7th (outermost) loop used during training

Challenges with DNN Computations

• Millions of Parameters (i.e., weights)

• Billions of computations

DNN Topology	Number of Weights
AlexNet (2012)	3.98M
VGGnet-16 (2014)	28.25M
GoogleNet (2015)	6.77M
Resnet-50 (2016)	23M
DLRM (2019)	540M
Megatron (2019)	8.3B

DRAM

Buffer

Need lots of parallel compute

This makes CPUs

inefficient

Outline

- Background on DNNs
- DNN Accelerators
- Dataflow and Mapping
- Flexibility

The DL Inference Accelerator Zoo

Spatial (or Dataflow) Accelerators

- Millions of Parameters (i.e., weights)
 - Billions of computations **Memory Hierarchy** * Spread computations across hundreds of ALUs ALU ALU ALU ALU emor Control ALU ALU ALU ALU Register/FIFO/SRAM erarch Heavy data movement ALU ALU ALU ALU Reuse data within the ALU array via local memories **ALU** ALU ALU and direct communication

Processing Element (PE)

Tushar Krishna | School of ECE | Georgia Institute of Technology

*Y. Chen et. al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA, 2016.

Types of Algorithmic Data Reuse in DNNs

Hardware structures to exploit reuse

Tushar Krishna | School of ECE | Georgia Institute of Technology

Mapping and Dataflow

7-dimensional network layer

- Goal of Mapping: translate algorithmic data reuse to HW data reuse
- Precise Definition of Mapping: Fine-grained schedule of computations within DNN accelerators
 - **Computation Order** (slowest tensor dimension often called "stationary")
 - Parallelization Strategy (which loops to unroll spatially)
 - Tiling Strategy (number of levels of memory hierarchy)
 - Tile Sizes

Architectural Components of a DNN Accelerator

27

Architectural Components of a DNN Accelerator

HW Design-Space

Architectural Components of a DNN Accelerator

MAERI-FPGA @ ICS 2022

Tushar Krishna | School of ECE | Georgia Institute of Technology

GEMM vs CONV2D Accelerators

GEMM Operation

Result matrix C

CONV2D Operation

3 Loops

- Less Opportunities for Reuse
- More general: any DNN layer (including convolutions) can be lowered to GEMM (e.g, Im2Col)
- E.g., NVIDIA Tensor Core, Google TPU

7 Loops

- More Opportunities for Reuse
- Only applicable for convolution layers
- E.g., NVDLA, MAERI (this work)

Outline

- Background on DNNs
- DNN Accelerators
- Dataflow and Mapping
- Flexibility

Dataflow and Mapping

7-dimensional network layer

- Goal of Mapping: translate algorithmic data reuse to HW data reuse
- Precise Definition of Mapping: Fine-grained schedule of computations within DNN accelerators
 - Computation Order (slowest tensor dimension often called "stationary")
 - Parallelization Strategy (which loops to unroll spatially)
 - Tiling Strategy (number of levels of memory hierarchy)
 - Tile Sizes

Dataflow

Takeaways: Data Reuse + Hardware Support

- Dataflow exposes data reuse opportunities
- Hardware support is needed to leverage reuse opportunity

Hardware Structure	Per Data Type	Weight Stationary Dataflow Implication	Output Stationary Dataflow Implication	
Bandwidth to	Weight Fetch Rate	Every S Cycles	Every Cycle	
MAC	Input Fetch Rate	Every Cycle	Every Cycle	
	Output Fetch Rate	Every Cycle	Every S Cycles	Note: for full 6
Local Buffer	Weight Buffer Size	1	3	<i>conv,</i> trillions c
Sizes for	Input Buffer Size	3	3)	valid dataflow choices \rightarrow Hud
Reuse	Output Buffer Size	3	1	Design Space
Network-on-	Weight Distribution	Unicast	Spatial Multicast	
Chip for Spatial Reuse	Input Distribution	Spatial Multicast	Unicast	
	Output Collection	Spatial Reduction	Temporal Reduction	

Dataflow and Mapping

7-dimensional network layer

- Goal of Mapping: translate algorithmic data reuse to HW data reuse
- Precise Definition of Mapping: Fine-grained schedule of computations within DNN accelerators
 - Computation Order (slowest tensor dimension often called "stationary")
 - Parallelization Strategy (which loops to unroll spatially)
 - Tiling Strategy (number of levels of memory hierarchy)
 - Tile Sizes

Dataflow

Impact of Parallelization

(i.e., Simplified Fully-connected layer)

Impact of Parallelization

Example Model B: Matrix-Vector Multiplication (i.e., Simplified Fully-connected layer)

Can we map it in a better way?

Impact of Parallelization

Outline

- Background on DNNs
- DNN Accelerators
- Dataflow and Mapping
- Flexibility

Trend 1: Diversity in DNN Models

- Layer Sizes
- Layer Shapes
- Layer Types

<Number of new ML papers in Arxiv>

Evolution of DNN Models

- Trend 1: Diversity in DNN Models
 - Layer Sizes
 - Layer Shapes
 - Layer Types

• **Trend 2: Diversity in Implementations**

- Depth-wise/Point-wise Convolutions
- Pruning \rightarrow Sparsity

e.g. of Depth-wise Separable CONV

• Trend 1: Diversity in DNN Models

- Layer Sizes
- Layer Shapes
- Layer Types

Trend 2: Diversity in Implementations

- Depth-wise/Point-wise Convolutions
- Pruning \rightarrow Sparsity

Trend 3: Diversity in Mapping/Dataflow

- Loop Transformations ("Dataflow")
 - Order, Parallelization, Tiling
 - "Weight Stationary", "Row Stationary"
- Partitioning Strategies Per Layer, Cross Layer, ..

Trend 1: Diversity in DNN Models

- Layer Sizes
- Layer Shapes
- Layer Types

Trend 2: Diversity in Implementations

- Depth-wise/Point-wise Convolutions
- Pruning \rightarrow Sparsity

Trend 3: Diversity in Mapping/Dataflow

- Loop Transformations ("Dataflow")
 - Order, Parallelization, Tiling
 - "Weight Stationary", "Row Stationary"
- Partitioning Strategies Per Layer, Cross Layer, ...

Myriad "irregular" shapes, sizes, accesses

Challenge:

Getting high-utilization from accelerator for all cases.

Why? Aren't DNNs essentially Matrix-Matrix multiplications?

Example of GEMM Operation

Distribute Row multicast

Collect Column Reduce

Communication

Distribute

Collect

Tushar Krishna | School of ECE | Georgia Institute of Technology

Mapping Efficiency needs Mapping Flexibility **Sparse** Irregular Irregular Regular 8 8 4 **→**2 5 8 4 Logical: {3x1, 2x1, 4x1, Logical: 2x8 Logical: 5x3 **Physical Array: 4x4** 1x1, 4x1, 2x1 **Map Effic. = 100% Map Effic. = 100% Map Effic. = 100% Map Effic. = 94%** How to support Mapping Flexibility? Distribute **Spatial Multicast** Row multicast Multicast to non-neighbors Only send non-zeros **Multiple Parallel** Variable Length Variable Non-Uniform Length Collect **Column Reduce** Flexible data distribution and reduction

Tushar Krishna | School of ECE | Georgia Institute of Technology

June 27, 2022

Levels of Flexibility

Introducing MAERI2.0 – A Flexible DNN Accelerator

ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention

50

Focus of Today's Tutorial

- Supported Neural Network Model
- Quantization Flow
- Memory Layout
- Heterogeneous Scheduling
- MAERI 2.0 Microarchitecture
- FPGA DEMO

Future Work:

- Support for Sparsity
- Support for Multi-layer Mapping
- Compiler support

Schedule (EST)

Time slot	Торіс	
14:00 to 14:30	Introduction to DNN Accelerators	Tushar
14:30 – 14:40	Break	
14:40: 15:10	MAERI2.0 Architecture and Tool Flow	Jianming
15:10 to 15:30	Demo on FPGA	Jianming

Brief Q/A at the end of each talk.

Please feel free to interrupt and ask questions or use chat

Attention: Tutorial is being recorded!

https://maeri-project.github.io/tutorials/ics-2022