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Brief Q/A at the end 
of each talk.

Time slot Topic

14:00 to 14:30 Introduction to DNN Accelerators Tushar

14:30 – 14:40 Break

14:40: 15:10 MAERI2.0 Architecture and Tool Flow Jianming

15:10 to 15:30 Demo on FPGA Jianming

Attention: Tutorial is 
being recorded!

Please feel free to 
interrupt and ask 

questions or use chat
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https://maeri-project.github.io/tutorials/ics-2022

https://maeri-project.github.io/tutorials/ics-2022
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“AI is the new electricity” – Andrew Ng

Object Detection

Speech Recognition

Image Segmentation Medical Imaging

GamesText to Speech Recommendations



Computation Platforms in Deep Learning
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Training Inference
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Eyeriss

NVDLA

ARM Trillum

Apple Neural Engine
CambriconX

CPU / GPU / TPU clusters

Inference Accelerators
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…

C

X

YS

R
C

K

DNN Model/Shape Mapping
(Dataflow)

Accelerator
Microarchitecture

RuntimeEnergy

Training Inference

Focus of this 
Tutorial
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• Background on DNNs
• DNN Accelerators
• Dataflow and Mapping
• Flexibility
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• Background on DNNs
• DNN Accelerators
• Dataflow and Mapping
• Flexibility



What is a Deep Neural Network?
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Neurons Synapses

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1
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Weighted Sum

[Image Source: Stanford]

Each synapse has a weight for 
neuron activation



Modern Deep Learning Landscape
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Model Creation Training Inference

Conv.
Layer

Conv.
Layer

... Conv.
Layer

Pool.
Layer

FC
Layer

“Georgia Institute of 
Technology, Atlanta”

Intermediate 
features

Convolutional Layers
(Feature Extraction) Summarize features
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x1

x2

xk

w1

w2

wk

O

OutputInput Weight

Neuron => Vector x Vector

n=1
n=1



Computations in a DNN à Linear Algebra
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x1

x2

xk

w11

w12

w1k

O1

wn1
wn2

wnk

On

…

DNN Layer => Vector x Matrix

OutputInput Weight

Data “Reuse”



Computations in a DNN à Linear Algebra
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x11

x12

x1k

w11

w12

w1k

O1

wn1
wn2

wnk

On

…

Batching => Matrix x Matrix

OutputInput Weightxm1

xm2

xmk

x21

x22

x2k

…

GEMM

Data “Reuse”



Convolutional Neural Networks

Shared Weights:
All neurons use the same filter weights

Input Neurons First Hidden Layer

“Input Feature Map”

“Weight Filter” or 
“Weight Kernel”
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Even more 
“Reuse”



Convolution in CNN
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Y’

X’

R

S

Y

X
dot 

product
partial sum

accumulation

Input Image
Output ImageFilter



Convolution in CNN
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Many
Input Channels

Input Image
Output Image



Convolution in CNN
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Convolution in CNN
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Filters

R

S

…

…

…C

Y

X

…

…

…C

…

Y’

X’

…

…

…K

…

…

…K

…

R

S

…

…

…C

Y

X
…

…C

1

N

1

K

1

…

…

Many
Input Images Many

Output Images

…

Y’

X’
N
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for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) {  // Input feature map row
for(x=0; x<H; x++) {  // Input feature map column
for(j=0; j<R; j++) {  // Weight filter row
for(i=0; i<R; i++) {  // Weight filter column

O[n][m][x][y] += W[m][c][i][j] * I[n][c][y][x]}}}}}}}

7th (outermost) loop used 
during training



Challenges with DNN Computations
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• Millions of Parameters (i.e., weights)
• Billions of computations

• Heavy data movement

DNN Topology Number of Weights

AlexNet (2012) 3.98M

VGGnet-16 (2014) 28.25M

GoogleNet (2015) 6.77M

Resnet-50 (2016) 23M

DLRM (2019) 540M

Megatron (2019) 8.3B

Need lots of parallel compute

Need to reduce energy

This makes CPUs 
inefficient

This makes GPUs 
inefficient
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• Background on DNNs
• DNN Accelerators
• Dataflow and Mapping
• Flexibility



The DL Inference Accelerator Zoo
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Spatial (or Dataflow) Accelerators
• Millions of Parameters (i.e., weights)

• Billions of computations

• Heavy data movement

Spread computations 
across hundreds of ALUs

Reuse data within the 
array via local memories 

and direct communication

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU M
em

ory H
ierarchy

Control

Register/FIFO/SRAM

*

*Y. Chen et. al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” ISCA, 2016.

Processing Element (PE)
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Types of Algorithmic Data Reuse in DNNs
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Filter ReuseConvolutional Reuse Fmap Reuse
CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap
Filters

2

1

Input Fmap Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: ActivationsReuse: Filter weightsReuse:

Slide Acknowledgment: Yu-Hsin Chen, Vivenne Sze, Joel Emer (MIT) How to exploit reuse?



Hardware structures to exploit reuse
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Temporal Reuse Spatial Reuse Spatio-Temporal Reuse

DRAM Buf RF ALU

Memory Hierarchy / Staging Buffers

Buf

Multicasting-support NoCs

E.g., Custom memory hierarchies in accelerators. E.g., Hierarchical Bus in Eyeriss (ISCA 2016), Tree in 
MAERI (ASPLOS 2018)

E.g., TPU (ISCA 2017), local network in Eyeriss
(ISCA 2016)

PEs

Ti
m

e

PE0 PE1 PE2 PE3 …

1 ……

PE0 PE1 PE2 PE3 …

1 ……

PE0 PE1 PE2 PE3 …

1…

PE0 PE1 PE2 PE3 …

2 ……

1 …

2

PEs

Ti
m

e

PE0 PE1 PE2 PE3 …

0

PE0 PE1 PE2 PE3 …

0 ……

1 …

1Ti
m

e

PEs

Neighbor-to-Neighbor Connections

Buf



Mapping and Dataflow
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PE

PE

PE

PE

PE

PE

PE
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PE

PE
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PE

PE

PE

PE

PE

7-dimensional network layer

.

.

.
N

.

.

.
N

C

C

K

K
C

X’

Weights Inputs
Outputs

R

S

Y

X

Y’ map

7D Computation Space: R * S * X * Y * C * K * N

• Number of PEs
• Memory 

Hierarchy
• Interconnect 

Bandwidth
• …

§ Goal of Mapping: translate algorithmic data reuse to HW data reuse
§ Precise Definition of Mapping: Fine-grained schedule of computations within DNN 

accelerators
• Computation Order (slowest tensor dimension often called “stationary”)
• Parallelization Strategy (which loops to unroll spatially)
• Tiling Strategy (number of levels of memory hierarchy)
• Tile Sizes

Dataflow



Architectural Components of a DNN Accelerator

MAERI-FPGA @ ICS 2022                                              Tushar Krishna | School of ECE | Georgia Institute of Technology

HW Resources

Mapping

Model

Accelerator

Num of PEs

Buffer Sizes

Tiling Ordering Parallelism

NoCs

Shape

Accel.

Latency
Energy
Power
Area

Dataflow
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Architectural Components of a DNN Accelerator
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Filter 
Weight

Input 
Activation

X’

Y’

K

N

Output 
Activation

Workload (CONV2D)

CONV =
…

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

PE
Spad

G
lobal Spad

Target Accelerator

…Mapping

PE

L1 Spad
(S1)

ALU

C
ontroller

Number of PEs

Buffer sizes 
(global/ local)

NoCs

(Resnet50)

HW Design-Space
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Architectural Components of a DNN Accelerator
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CONV =
…
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PE
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PE
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PE
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G
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Target Accelerator

…Mapping

PE

L1 Spad
(S1)

ALU

C
ontroller

Number of PEs

3 4
1 2

7 8
5 6

Time

1 2 3 4

1 2 1 2

t=1 t=2

Tile Scheduling Spatial Partitioning

Mapping on entire
accelerator at time = 1

Dataflow

PE0 PE1 PE2 PE3

1 2 3 4
3 3 3 3
1 1 1 1

…
7 8
5 6

3 4
1 2

… …K

3
1

4
2

C

S
R

X
Y

C

N

X’

Y’
N

…

Filter Tiles Input Tiles Output Tiles

151331
… 161442

…

Number: Tile IDs
Data / Computation Tile Sizing

Number: Tile IDs

Ordering Parallelism 
DimensionTiling Mapping Shape 

(Level of Tiling) 

NoCs

HW Design-Space

Mapping Design-Space
aka Map-Space

(Resnet50)

Buffer sizes 
(global/ local)
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GEMM vs CONV2D Accelerators
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Filter
Weight

Input
Activation

Output
Activation

X =

CONV2D OperationGEMM Operation

3 Loops 7 Loops

- More Opportunities for Reuse- Less Opportunities for Reuse
- More general: any DNN layer (including 
convolutions) can be lowered to GEMM (e.g, Im2Col)

- Only applicable for convolution layers

- E.g., NVIDIA Tensor Core, Google TPU
- E.g., NVDLA, MAERI (this work)



Outline 

June 27, 2022MAERI-FPGA @ ICS 2022                                              Tushar Krishna | School of ECE | Georgia Institute of Technology

31

• Background on DNNs
• DNN Accelerators
• Dataflow and Mapping
• Flexibility



Dataflow and Mapping
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PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

7-dimensional network layer

.

.

.
N

.

.

.
N

C

C

K

K
C

X’

Weights Inputs
Outputs

R

S

Y

X

Y’ map

7D Computation Space: R * S * X * Y * C * K * N

• Number of PEs
• Memory 

Hierarchy
• Interconnect 

Bandwidth
• …

§ Goal of Mapping: translate algorithmic data reuse to HW data reuse
§ Precise Definition of Mapping: Fine-grained schedule of computations within DNN 

accelerators
• Computation Order (slowest tensor dimension often called “stationary”)
• Parallelization Strategy (which loops to unroll spatially)
• Tiling Strategy (number of levels of memory hierarchy)
• Tile Sizes

Dataflow



X’
0
1
2
3
4
5

S

0 1 2 3 4 5

X’
0
1
2
3
4
5

S

0 1 2 3 4 5

Impact of Computation Order
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for(int x = 0; x < X’; x++)
for(int s = 0; s < S; s++)

Output[x] += Weight[s] * Input[x+s]

PartialSum[X’][S] needs to access:
- Weight[s]
- Output[x’]
- Input[x’+s]

Suppose we map this 
computation over three PEs

PE0
PE1
PE2

Each point is a 
partial sum

Computation Space

“Output 
Stationary” 

Dataflow

Output does not 
change over time

=> Temporal 
reuse 

opportunity

Time = 0Time = 1Time = 2

June 27, 2022

S0 1 2 3 4 5

X’0 1 2 3 4 5

X0 1 2 3 4 5
Input

Output

Weight

Data Space

Each point is a 
data pointS0 1 2 3 4 5

S

Weights

X

Inputs

X’ = X-S

Outputs*

* =

Computation Data

Spatial multicast 
opportunity for 

weights

CONV1D



for(int x = 0; x < X’; x++)
for(int s = 0; s < S; s++)

Output[x] += Weight[s] * Input[x+s]

Computation

Impact of Computation Order
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for(int s = 0; s < S; s++)
for(int x = 0; x < X’; x++)

Output[x] += Weight[s] * Input[x+s]

PartialSum[X’][S] needs to access:
- Weight[s]
- Output[x’]
- Input[x’+s]

Data

Suppose we map this 
computation over three PEs

PE0
PE1
PE2

Each point is a 
partial sum

Computation Space

“Weight 
Stationary” 

Dataflow

Weight does not 
change over time

=> Temporal 
reuse 

opportunity

Time = 0Time = 1Time = 2

June 27, 2022

S

Weights

X

Inputs

X’ = X-S

Output*

* =

Computation

S0 1 2 3 4 5

X’0 1 2 3 4 5

X0 1 2 3 4 5
Input

Output

Weight

Data Space

Each point is a 
data pointS0 1 2 3 4 5

X’
0
1
2
3
4
5

S

0 1 2 3 4 5

X’
0
1
2
3
4
5

S

0 1 2 3 4 5

Need Spatial 
reduction for output

CONV1D



Takeaways: Data Reuse + Hardware Support
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• Dataflow exposes data reuse opportunities
• Hardware support  is needed to leverage reuse opportunity

Hardware 
Structure

Per Data Type Weight Stationary 
Dataflow Implication

Output Stationary 
Dataflow Implication

Bandwidth to 
MAC

Weight Fetch Rate Every S Cycles Every Cycle

Input Fetch Rate Every Cycle Every Cycle

Output Fetch Rate Every Cycle Every S Cycles

Local Buffer 
Sizes for 
Temporal 
Reuse

Weight Buffer Size 1 3

Input Buffer Size 3 3

Output Buffer Size 3 1

Network-on-
Chip for Spatial 
Reuse

Weight Distribution Unicast Spatial Multicast

Input Distribution Spatial Multicast Unicast

Output Collection Spatial Reduction Temporal Reduction

Note: for full 6D 
conv, trillions of 
valid dataflow 
choices à Huge 
Design Space



Dataflow and Mapping
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PE
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PE

PE

PE

7-dimensional network layer

.

.

.
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N

C
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K
C

X’

Weights Inputs
Outputs

R

S

Y

X

Y’ map

7D Computation Space: R * S * X * Y * C * K * N

• Number of PEs
• Memory 

Hierarchy
• Interconnect 

Bandwidth
• …

§ Goal of Mapping: translate algorithmic data reuse to HW data reuse
§ Precise Definition of Mapping: Fine-grained schedule of computations within DNN 

accelerators
• Computation Order (slowest tensor dimension often called “stationary”)
• Parallelization Strategy (which loops to unroll spatially)
• Tiling Strategy (number of levels of memory hierarchy)
• Tile Sizes

Dataflow



Matrix A Vector B

X

Vector C

=

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[2][0] A[2][1] A[2][2]

A[3][0] A[3][1] A[3][2]

A[4][0] A[4][1] A[4][2]
A[5][0] A[5][1] A[5][2]

B[0] B[1] B[2]

C[0]

C[1]

C[2]

C[3]

C[4]

C[5]

Impact of Parallelization
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Example Model A: Matrix-Vector Multiplication
(i.e., Simplified Fully-connected layer)

C[0] = A[0][0] * B[0]
+ A[0][1] * B[1]
+ A[0][2] * B[2]

Map

Avg. Utilization: 100%

Parallelize

Parallelize

Example 
Accelerator

PE0 PE1 PE2

Global Scratchpad

Matrix A

Vector B

A[0][0] A[0][1] A[0][2]

B[0] B[1] B[2]

* Note: Vector B is transposed to be intuitive



Matrix A Vector B

X

Vector C

=

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

A[3][0] A[3][1]

A[4][0] A[4][1]
A[5][0] A[5][1]

B[0] B[1]

C[0]

C[1]

C[2]

C[3]

C[4]

C[5]

Impact of Parallelization
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Example Model B: Matrix-Vector Multiplication
(i.e., Simplified Fully-connected layer)

C[0] = A[0][0] * B[0]
+ A[0][1] * B[1]

Parallelized

Parallelized

Example 
Accelerator

PE0 PE1 PE2

Global Scratchpad

Map

Avg. Utilization: 66%

Matrix A

Vector B

A[0][0] A[0][1]

B[0] B[1]

* Note: Vector B is transposed to be intuitive
Can we map it in a better way?



Matrix A Vector B

X

Vector C

=

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

A[3][0] A[3][1]

A[4][0] A[4][1]
A[5][0] A[5][1]

B[0] B[1]

C[0]

C[1]

C[2]

C[3]

C[4]

C[5]

Impact of Parallelization
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Example Model B: Matrix-Vector Multiplication
(i.e., Simplified Fully-connected layer)

C[0] = A[0][0] * B[0]
+ A[0][1] * B[1]
+ A[0][2] * B[2]

Example 
Accelerator

PE0 PE1 PE2

Global Scratchpad

Map

Avg. Utilization: 100%

Time = 0
Matrix A

Vector B

A[0][0] A[1][0] A[2][0]

B[0] B[0] B[0]

* Note: Vector B is transposed to be intuitive

Pa
ra

lle
liz

ed

Parallelized

Matrix A

Vector B

A[3][0] A[4][1] A[5][2]

B[0] B[0] B[0]
Time = 1

[0] [0]

The more dimensions, the more optimization opportunities



Outline 

June 27, 2022MAERI-FPGA @ ICS 2022                                              Tushar Krishna | School of ECE | Georgia Institute of Technology

40

• Background on DNNs
• DNN Accelerators
• Dataflow and Mapping
• Flexibility



Why do we need flexible DNN accelerators?
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• Trend 1: Diversity in DNN Models
• Layer Sizes
• Layer Shapes
• Layer Types

<Number of new ML papers in Arxiv>
Speech 

Recognition Translation
Image 

Processing

…

2012 2014 2015 2016 2017 2018 2019

AlexNet VGGNet ResNet Transformer
MobileNetv2

EfficientNet

Evolution of DNN Applications

Evolution of DNN Models



Why do we need flexible DNN accelerators?
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• Trend 1: Diversity in DNN Models
• Layer Sizes
• Layer Shapes
• Layer Types

• Trend 2: Diversity in Implementations
• Depth-wise/Point-wise Convolutions
• Pruning à Sparsity

e.g. of Pruning

e.g. of Depth-wise Separable CONV
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• Trend 1: Diversity in DNN Models
• Layer Sizes
• Layer Shapes
• Layer Types

• Trend 2: Diversity in Implementations
• Depth-wise/Point-wise Convolutions
• Pruning à Sparsity

• Trend 3: Diversity in Mapping/Dataflow
• Loop Transformations (“Dataflow”)

• Order, Parallelization, Tiling
• “Weight Stationary”, “Row Stationary”

• Partitioning Strategies – Per Layer, Cross Layer, ..

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

.

.

.
N

.

.

.
N

C

C

K

K
C

X’

Weights Inputs Outputs

R

S

Y

X

Y’

m
ap

Computation Order
Parallelization
Tiling

Dataflow

Data Reuse

Data 
Movement
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• Trend 1: Diversity in DNN Models
• Layer Sizes
• Layer Shapes
• Layer Types

• Trend 2: Diversity in Implementations
• Depth-wise/Point-wise Convolutions
• Pruning à Sparsity

• Trend 3: Diversity in Mapping/Dataflow
• Loop Transformations (“Dataflow”)

• Order, Parallelization, Tiling
• “Weight Stationary”, “Row Stationary”

• Partitioning Strategies – Per Layer, Cross Layer, ..

Myriad “irregular” 
shapes, sizes, accesses 

Challenge:
Getting high-utilization from 
accelerator for all cases.

Why?
Aren’t DNNs essentially 
Matrix-Matrix multiplications?
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K

M K

N

M

N

Metric 1: Mapping Efficiency
Percentage of PEs with useful computations 
mapped over them

Metric 2: Utilization
Mapping Efficiency x Activity

e.g., TPU
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Distribute

Collect

Communication 

Map Effic. = 100%

4

4 8

4

Distribute

Collect

Row multicast

Column Reduce

Regular

Physical Array: 4x4
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Distribute

Collect

Communication 

Map Effic. = 100% Map Effic. = 50%

Map Effic. = 50%

Map Effic. = 75%

Map Effic. = 19%

Map Efffic. = 62%

Map Effic. = 38%

4

4 8

4
8

2 8
2 3

5 8

5
8

4

Distribute

Collect

Row multicast

Column Reduce

Regular Irregular Irregular Sparse

Physical Array: 4x4

6

4
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4

4 8

4
8

2 8
2 3 5 6

4 8

4

5 8

Distribute

Collect

How to support Mapping Flexibility?

Row multicast

Column Reduce

Spatial Multicast
Multiple Parallel

Multicast to non-neighbors
Variable Length

Only send non-zeros
Variable Non-Uniform Length

Map Effic. = 100%
Map Effic. = 100% Map Effic. = 94%

Map Effic. = 100%

Flexible data distribution and reduction

Logical: 2x8 Logical: 5x3

Regular Irregular Irregular Sparse

Logical:  {3x1, 2x1, 4x1, 
1x1, 4x1, 2x1} Physical Array: 4x4



Levels of Flexibility

June 27, 2022MAERI-FPGA @ ICS 2022                                              Tushar Krishna | School of ECE | Georgia Institute of Technology

49

4

4 8

4
8

2 8
2 3 5 6

4 8

4

5 8

Map Effic. = 100%
Map Effic. = 100% Map Effic. = 94%

Map Effic. = 100%

Logical: 2x8 Logical: 5x3

Regular Irregular Irregular Sparse

Logical:  {3x1, 2x1, 4x1, 
1x1, 4x1, 2x1} Physical Array: 4x4

Fixed Homogeneous Clusters
(i.e., fixed cluster size 
=> fixed aspect ratio)

Partially-Flexible 
Homogeneous Clusters

(configurable (limited choices) 
number of PEs per cluster)

Fully-Flexible 
Homogeneous Clusters

(configurable (any choice) 
number of PEs per cluster)

Fully-Flexible 
Heterogeneous Clusters

(configurable (any choice) 
unequal sized clusters)

“Cluster”
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Spatial Reuse via 
Broadcasts

Spatio-Temporal Reuse via 
forwarding of inputs

Temporal Reuse via 
memory hierarchy Temporal Reuse 

i.e. “stationary” via 
local buffers

MAERO 2.0 builds upon:
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable 
Interconnects: 
Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna
ASPLOS 2018, IEEE Micro Top Picks 2019 Honorable Mention
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• Supported Neural Network Model
• Quantization Flow
• Memory Layout
• Heterogeneous Scheduling
• MAERI 2.0 Microarchitecture
• FPGA DEMO

Future Work: 
• Support for Sparsity
• Support for Multi-layer Mapping
• Compiler support



Schedule (EST)
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Brief Q/A at the end 
of each talk.

Time slot Topic

14:00 to 14:30 Introduction to DNN Accelerators Tushar

14:30 – 14:40 Break

14:40: 15:10 MAERI2.0 Architecture and Tool Flow Jianming

15:10 to 15:30 Demo on FPGA Jianming

Attention: Tutorial is 
being recorded!

Please feel free to 
interrupt and ask 

questions or use chat
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https://maeri-project.github.io/tutorials/ics-2022

https://maeri-project.github.io/tutorials/ics-2022

