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iAct Reuse

Sliding Windows Overlap

iAct Reuse

Multi-Kernel

Weights Reuse

Multi-iAct Tiling

Insight 1: iAct and weights are reused.

Insight 2: iAct access are not continuous, weights access are continuous.
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Insight 1: need on-chip buffer to store data for leveraging reuse. 
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● Kernel Parallelism.



MAERI 2.0 Micro-architecture - Computation

116

iAct



MAERI 2.0 Micro-architecture - Computation

117

iAct



MAERI 2.0 Micro-architecture - Computation

118
● Process                Sliding Windows 

iAct



MAERI 2.0 Micro-architecture - Computation

119
● Process                Sliding Windows 

iAct

Store &

Forward



MAERI 2.0 Micro-architecture - Computation

120

Weights

DPE Array



MAERI 2.0 Micro-architecture - Computation

121

Weights

DPE Array

Broadcast



MAERI 2.0 Micro-architecture - Computation

122

Weights

DPE Array

Broadcast



MAERI 2.0 Micro-architecture - Computation

123
● Process                kernels in parallel 

Weights

DPE Array

Broadcast



Challenge 2: Continuous DRAM access 

124



Challenge 2: Continuous DRAM access 

125



Challenge 2: Continuous DRAM access 

126



Challenge 2: Continuous DRAM access 

127

Latency Operation Continuous Jump Mode

Read 256 data (128 bit) 256 1182

Write 128 data (128 bit) 128 576



Challenge 2: Continuous DRAM access 

128

Latency Operation Continuous Jump Mode

Read 256 data (128 bit) 256 1182

Write 128 data (128 bit) 128 576

Insight 2: need multi-level tiling to delivery continuous DRAM access.
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● L1 Tile: The data each single PE requires.
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● L3 Tile: Transferred Data from DRAM to achieve continuous data access.

● L2 Tile: Data the entire DPE Array requires every cycle.
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● Line Buffer →Reuse overlapped iAct for sliding windows.

● iAct Reuse in different DPE rows → Reuse iAct by multiple kernels
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● Stationary Buffer → Enable weights reuse on different L2 weights tile

● Weights Buffer → Double buffer for L2 weights tile.

● Weights are broadcasted in different DPE columns

● Buffer Write and Data Forward happen in parallel for fetching first weights
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Goal of DEMO 1: Demonstrate the entire MAERI 2.0 Flow

● Platform: zcu 104
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● Supported Neural Network Model

● Quantization Flow

● Memory Layout

● Heterogeneous Scheduling

● MAERI 2.0 Microarchitecture
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Thank You!

Welcome for Questions!

https://maeri-project.github.io/

Join us to build a better framework for researcher!

https://maeri-project.github.io/

